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OV Overview of ComputationalScienceCopyright (C) 1991, 1992, 1993, 1994, 1995 by the Computational Science Education ProjectThis electronic book is copyrighted, and protected by the copyright laws of the United States.This (and all associated documents in the system) must contain the above copyright notice.If this electronic book is used anywhere other than the project's original system, CSEP mustbe noti�ed in writing (email is acceptable) and the copyright notice must remain intact.1 IntroductionPresently there is no generally accepted de�nition of Computational Science. In broadterms it is about using computers to analyze scienti�c problems. Thus we distinguish itfrom computer science, which is the study of computers and computation, and from theoryand experiment, the traditional forms of science. Computational Science seeks to gain un-derstanding principally through the analysis of mathematical models on high performancecomputers. The term computational scientist has been coined to describe scientists, engi-neers and mathematicians who apply high performance computer technology in innovativeand essential ways to advance the state of knowledge in their respective disciplines. More re-cently, computational science has begun to make inroads into other areas such as economics,music and visual arts.We shall use the term \computational science" as a convenient shorthand for \compu-tational science and engineering." A well-known characterisation of computational scienceactivities was presented by K. Wilson in 1986 [1]. He summarized the characteristics ofcomputational science problems in whatever discipline as those;1. having a precise mathematical statement,2. being intractable by traditional methods,3. having a signi�cant scope,4. requiring an in-depth knowledge of science, engineering or the arts.At that time Wilson also addressed a number of open issues concerning computational sci-ence, all of which are still open issues today and will be addressed in the following sections.
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1.1 Is there a Computational Science Community?The computational approach to doing science is inherently multi-disciplinary: it requires ofits practitioners a �rm grounding in applied mathematics and computer science in additionto a command of one or more scienti�c or engineering disciplines or in the high-tech arts.Thereby the role of computer science is similar to the role of mathematics in the mathematicalsciences in that it provides the tools, ranging from networking and visualization tools toalgorithms, that match modern computer architectures. Mathematics provides means toestablish credibility of algorithms, such as error analysis, exact solutions and expansions,uniqueness proofs and theorems.At this stage computational science may be thought of as a methodology common to avariety of sciences, which makes use of the same kind of tools. It is conceivable that compu-tational science will one day be rede�ned as a discipline, following signi�cant breakthroughsand as some of its major challenges are addressed. The computational science communityis very diverse and includes researchers with a multitude of area-speci�c terminology andresearch methodologies. This community as a whole carries the responsibility to de�ne qual-ity research in this area and to set the standards for publications. The community has thetask to assess what activities have value and to communicate results within this very di-verse community. Furthermore, there is a need to develop training and education of futurepractitioners of computational science [3].1.2 What Role do the Grand Challenges play in the Advance-ment of Computational Science?Historically, studies of speci�c problems and corresponding breakthroughs have led to newscienti�c disciplines. Physics, Chemistry and Astronomy emerged out of Natural Philosophyfollowing the important discoveries by Newton, LaVoisier and Galileo respectively. Thetype of problems in which computational science could achieve breakthroughs are generallyreferred to as 'grand challenges'. A nice de�nition of grand challenges stems from the O�ceof Science and Technology Policy:Grand Challenges are...fundamental problems in science and engineering, withpotentially broad social, political, and scienti�c impact, that could be advancedby applying high performance computing resources.As expected, there is a long list of grand challenge problems, including electronic structure ofmaterials, turbulence, genome sequencing and structural biology, global climate modeling,speech and language studies, pharmaceutical design, pollution and dispersion, and manymore. The grand challenges supported by the government under the High PerformanceComputing and Communications initiative are a select set of these.In 1991 the U.S. Department of Energy created two High Performance Computing Re-search Centers to serve as intellectual homes for selected grand challenges and to conduct,manage and integrate the research activities necessary to enable progress toward their solu-tion. To appreciate the scope of a grand challenge problem, consider the problem of modeling2
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the global environment. Atmospheric scientists, applied mathematicians and computer scien-tists from several institutions including NCAR (National Center for Atmospheric Research)and the Oak Ridge National Laboratory collaborate in the CHAMMP project. Studyingrainfall patterns is part of this e�ort. You may view some of their results on the WWW atURL:� http://www.epm.ornl.gov/chammp/chammpions.html1.3 How Signi�cant is the Role of Algorithm and ComputerTechnology Developments?Due to the continuous synergistic progress in algorithm development, computer technol-ogy, and computational science methodology, the scope of large-scale problems such as theone just mentioned can be continuously increased. Examples can be matched to the curvecorresponding to the increase in computing power of Cray vector supercomputers.At the time the Cray 1S emerged, codes forcasting the weather were accurate for no morethan 12 hours. The Cray XMP raised that limit to 24 hours and plasma modeling in 2Dbecame feasible. With the Cray 2 weather forcasting for 48 hours, modeling in chemicaldynamics and estimate of the Higgs Boson Mass were addressed. The Cray YMP allowed72 hour weather forcasting, and 2D nonlinear hydrodynamics. The C90 has made pharma-ceutical design, and vehicle signature feasible.Similarly, following the curve of Intel's massively parallel systems, there are examplesof problems that could be addressed in an increasing scope as the has computing powerincreased. [2] In 1952 Hartree had recognized the importance of algorithm development. Hisvision was that:"With the development of new kinds of equipment of greater capacity, and par-ticularly of greater speed, it is almost certain that new methods will have to bedeveloped in order to make the fullest use of this new equipment. It is neces-sary not only to design machines for the mathematics, but also to develop a newmathematics for the machines."Among examples of the most signi�cant developments in algorithms are the widely usedMetropolis, FFT and multigrid algorithms. The Metropolis algorithm grew out of physicalchemistry in 1950's through attempts to calculate statistical properties of chemical reactions.It is now used in a wide range of areas, including astrophysics, many areas of engineering,and chemistry. The FFT (Fast Fourier Transform), an implementation of Fourier Analysis,is used in signal processing, image processing, seismology, physics, radiology, acoustics andmany other areas. The more recent multigrid method for solving a wide variety of partialdi�erential equations is now applied to problems in physics, biophysics and engineering. Sincealgorithms emerging in one discipline are often adapted to problems in other disciplines, itis important to propagate such research results throughout the community.Computational scientists can now address problems that could not be solved one ortwo decades ago, and so computational science has emerged as a powerful and indispensable3
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method of analyzing a variety of problems in research, product and process development, andother aspects of manufacturing. Computational inquiry, in the form of numeric simulation,complements theory and experimentation in engineering and scienti�c research.Numeric simulations �ll the gap between physical experiments and analytical approaches.Numeric simulations provide both qualitative and quantitative insights into many phenomenathat are too complex to be dealt with by analytical methods and too expensive or dangerousto study via experiments. Some studies, such as nuclear repository integrity and globalclimate change, involve time scales that preclude the use of realistic physical experiments.Additional support for numeric simulation stems from the increasing frequency with whichsimulations are providing results of comparable accuracy to physical experiments.Thus we can now address some of the outstanding issues, to which conventional ap-proaches have proven inadequate, and we can formulate and investigate new questions whichwould not even be asked in the absence of our current and expected future computationaltools and methods. Computational Science has moved to the leading edge of science andengineering, and it is likely to remain there for a long time to come. As its supportingcomputing and communications technologies pervade our society, computational science willincreasingly be put to many uses, ranging from entertaining videogames running on VLSIchips to novel medical imaging equipment.1.4 Does Computational Science have Language Requirements?As Wilson pointed out, there has been a lack of an e�ective language to communicate newideas and results in computational science. This is in part due to the diversity of thecomputational science community.Currently the most popular languages for computational scientists are Fortran77, C, andC++. Fortran does not allow the programmer to structure programs so that they re
ectthe logical order of ideas involved in addressing a problem, and it is often complicated todelineate new contributions and modi�cations to existing large scienti�c Fortran codes. Dueto this in
exibility Fortran appears to be loosing ground, even though F77 is much easierto use than C++, which is growing in popularity. From a computer science viewpoint,there is very little di�erence between C and Fortran, except that C has marginally betterfacilities for structuring programs than the original Fortran77. Much more signi�cant arethe di�erences between C and a parallel C, or between Fortran and a parallel Fortran, andalso the di�erences between the various styles of parallel programming. These di�erencesare already having a big impact on software development for computational science, and itis not at all clear which "new practices" are the best. But it seems inevitable that signi�cantchanges in programming practice will have to include an increased familiarity with parallelmachines and thus parallel programming.We can observe compelling reasons for developing a language that provides both, pro-gramming 
exibility and structure. Numerous e�orts to provide more practical programminglanguages have led to a variety of innovative developments. Fortran90 is now emerging as apowerful scienti�c programming language, incorporating some of the best features of F77 and4
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C. Developments in the area of literate programming strive for both 
exibility and structure.The notion of literate programming, that like is grouped with like, and that logical structuretakes precedence over details, is in line with present trends to move towards object-orientedlanguages such as C++. Thus it is possible to write pseudo object-oriented code using lit-erate programming methodologies. One example is FWEB, where multiple languages aresupported within a single �le (C, C++, F77, RATFOR, Fortran90, TeX, etc.) providingthe greatest amount of 
exibility to the programmer. (Look for the upcoming chapter onLiterate Programming).The three main classes of parallel programming we can observe at this time also exhibita variety of approaches to address the language issues:data parallelism the easiest to learn, and arguably the easiest to write, debug, and tune,provided the problem maps well to this style. Languages for this type of parallelismare simple extensions of the corresponding sequential language. Examples are C?,Dataparallel C, and MasPar's MPL as extensions of C; pc++ as an extesion of C++;and the parallel array operations in HPF and Fortran90.parallel libraries runtime libraries such as PVM, P4, Linda, and MPI, which have proce-dures that can be called from any language. Users have to explicitly parallelize theircode, and contend with synchronization problems. There are two main classes withinthis group { shared memory and message passing { but as far as programming lan-guage issues are concerned, both classes are implemented by augmenting an existingsequential language with library routines for creating and coordinating parallel tasks.new high level languages with implicit parallelism the functional and logic program-ming languages often fall into this category. This approach requires programmers tolearn a whole new programming paradigm, not just a new language sytnax, but ad-herents claim the e�ort will be worth it in the long run.In summary we observe the lack of a common programming style among computationalscientists and a resulting breakdown of e�cient communication within the community.1.5 SummaryComputational science has developed much like a complex organism It was born in the 1940s,cutting its teeth on the ballistics and nuclear weapons design problems of World War II. Itwent through its adolescence during the 1970s and 80s, where it began making an industrialimpact in �elds such as commercial aircraft design. It is just now reaching its prime oflife and is poised to take advantage of rapidly developing computing and communicationsinfrastructure to secure its role as a major contributor to national and world economies.This timing is opportune. We are at a point, late in the industrial revolution, wherefurther re�nements to our current systems are costly and yield small returns. The conven-tional approaches to problem solving, theory and experiment, are quite mature. Most ofthe problems which are tractable by these approaches have already yielded to them. Yet5
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Table 1: Applications of Computational ScienceEstablished EmergingComputational Fluid BiologyDynamicsAtmospheric Science EconomicsSeismology MaterialsResearchStructural Analysis Medical ImagingChemistry Animal ScienceMagnetohydrodynamicsReservoir ModelingGlobal Ocean ModelingEnvironmental StudiesNuclear Engineeringwe are faced with a growing number of complex issues which require immediate attention,ranging from securing future sources of energy through managing a highly interdependentcollection of national economies to understanding the impact of human activity on our globalenvironment. There is increasing awareness that the scale and scope of the problems whichcomputational science will ultimately address is such that success is dependent on the es-tablishment of e�ective collaborations among government, academia and industry. It is onlythrough a common, coordinated e�ort that adequate resources and skills can be brought tobear on such problems. Various applications disciplines are at di�erent stages in theirassimilation of computational science (see table 1). Some, like aerodynamics, have fullyintegrated it into their culture. Others, like oceanography, have more recently begun torecognize its potential as a consequence of pioneering e�orts, such as global ocean modeling.In still other disciplines, such as many of the life sciences, much work remains to be done indetermining the role of computational science. Despite the varying degrees to which com-putational science has currently penetrated particular applications disciplines, the evidencethat it will have a fundamental impact on virtually all disciplines is clear.6
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2 Computational Science 6= Computer ScienceComputational science should not be confused with computer science. Computer scienceis the study of algorithms, languages, and machines for solving problems. It is related to,but distinct from, computer engineering, which focuses on the design and construction ofcomputing machines. Computational science focuses on a scienti�c or engineering problemand draws from computer science and mathematics to gain an improved understanding ofthe problem area. Even though computational science is quite distinct from most presentday computer science, many of the topics typically considered to be in the domain of com-puter science are of much value to the computational scientist. For example, when choosinga numerical algorithm to map to a particular computer architecture, the computational sci-entist must be aware of fundamental issues from areas such as data structures and softwaredesign. The �rst requirement of a computational scientist is to have command of an
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Figure 1: Computational Scienceapplied discipline. The e�ective computational scientist must also be familiar with leadingedge computer architectures and the data structure issues associated with those architec-tures. A computational scientist must have a good understanding of both the analysis andimplementation of numerical algorithms and the ways that algorithms map to data struc-tures and computer architectures. A familiarity with visualization methods and options isalso necessary for computational research. For instance, recently, scienti�c visualization forthe preprocessing of data sets and the interrogation of massive amounts of computationalresults has become an essential tool of the computational scientist. Thus a computationalscientist works in the intersection of (1) an applied discipline; (2) computer science; and(3) mathematics. Computational science is a blending of these three areas to obtain a bet-ter understanding of some phenomena through a judicious match between the problem, acomputer architecture, and algorithms. 7
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3 A Brief History of Computer TechnologyA complete history of computing would include a multitude of diverse devices such as theancient Chinese abacus, the Jacquard loom (1805) and Charles Babbage's \analytical en-gine" (1834). It would also include discussion of mechanical, analog and digital computingarchitectures. As late as the 1960s, mechanical devices, such as the Marchant calculator, stillfound widespread application in science and engineering. During the early days of electroniccomputing devices, there was much discussion about the relative merits of analog vs. digitalcomputers. In fact, as late as the 1960s, analog computers were routinely used to solvesystems of �nite di�erence equations arising in oil reservoir modeling. In the end, digitalcomputing devices proved to have the power, economics and scalability necessary to dealwith large scale computations. Digital computers now dominate the computing world in allareas ranging from the hand calculator to the supercomputer and are pervasive throughoutsociety. Therefore, this brief sketch of the development of scienti�c computing is limited tothe area of digital, electronic computers.The evolution of digital computing is often divided into generations. Each generationis characterized by dramatic improvements over the previous generation in the technologyused to build computers, the internal organization of computer systems, and programminglanguages. Although not usually associated with computer generations, there has been asteady improvement in algorithms, including algorithms used in computational science. Thefollowing history has been organized using these widely recognized generations as mileposts.3.1 The Mechanical Era (1623{1945)The idea of using machines to solve mathematical problems can be traced at least as far asthe early 17th century. Mathematicians who designed and implemented calculators that werecapable of addition, subtraction, multiplication, and division included Wilhelm Schickhard,Blaise Pascal,1 and Gottfried Leibnitz.The �rst multi-purpose, i.e. programmable, computing device was probably Charles Bab-bage's Di�erence Engine, which was begun in 1823 but never completed. A more ambitiousmachine was the Analytical Engine. It was designed in 1842, but unfortunately it also wasonly partially completed by Babbage. Babbage was truly a man ahead of his time: manyhistorians think the major reason he was unable to complete these projects was the fact thatthe technology of the day was not reliable enough. In spite of never building a completeworking machine, Babbage and his colleagues, most notably Ada,2 Countess of Lovelace, rec-ognized several important programming techniques, including conditional branches, iterativeloops and index variables.1Pascal's contribution to computing was recognized by computer scientist Nicklaus Wirth, who in 1972named his new computer language Pascal (and insisted that it be spelled Pascal, not PASCAL).2Another pioneer with a programming language named after her. Naming languages after mathematiciansis somewhat of a tradition in computer science. Other such languages include Russel, Euclid, Turning, andGoedel. 8
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A machine inspired by Babbage's design was arguably the �rst to be used in computa-tional science. George Scheutz read of the di�erence engine in 1833, and along with his sonEdvard Scheutz began work on a smaller version. By 1853 they had constructed a machinethat could process 15-digit numbers and calculate fourth-order di�erences. Their machinewon a gold medal at the Exhibition of Paris in 1855, and later they sold it to the DudleyObservatory in Albany, New York, which used it to calculate the orbit of Mars. One of the�rst commercial uses of mechanical computers was by the US Census Bureau, which usedpunch-card equipment designed by Herman Hollerith to tabulate data for the 1890 census.In 1911 Hollerith's company merged with a competitor to found the corporation which in1924 became International Business Machines.3.2 First Generation Electronic Computers (1937{1953)Three machines have been promoted at various times as the �rst electronic computers. Thesemachines used electronic switches, in the form of vacuum tubes, instead of electromechanicalrelays. In principle the electronic switches would be more reliable, since they would have nomoving parts that would wear out, but the technology was still new at that time and thetubes were comparable to relays in reliability. Electronic components had one major bene�t,however: they could \open" and \close" about 1,000 times faster than mechanical switches.The earliest attempt to build an electronic computer was by J. V. Atanaso�, a professorof physics and mathematics at Iowa State, in 1937. Atanaso� set out to build a machine thatwould help his graduate students solve systems of partial di�erential equations. By 1941 heand graduate student Cli�ord Berry had succeeded in building a machine that could solve 29simultaneous equations with 29 unknowns. However, the machine was not programmable,and was more of an electronic calculator.A second early electronic machine was Colossus, designed by Alan Turing for the Britishmilitary in 1943. This machine played an important role in breaking codes used by theGerman army in World War II. Turing's main contribution to the �eld of computer sciencewas the idea of the Turing machine, a mathematical formalism widely used in the study ofcomputable functions. The existence of Colossus was kept secret until long after the warended, and the credit due to Turing and his colleagues for designing one of the �rst workingelectronic computers was slow in coming.The �rst general purpose programmable electronic computer was the Electronic Numer-ical Integrator and Computer (ENIAC), built by J. Presper Eckert and John V. Mauchly atthe University of Pennsylvania. Work began in 1943, funded by the Army Ordnance Depart-ment, which needed a way to compute ballistics during World War II. The machine wasn'tcompleted until 1945, but then it was used extensively for calculations during the design ofthe hydrogen bomb. By the time it was decommissioned in 1955 it had been used for researchon the design of wind tunnels, random number generators, and weather prediction. Eckert,Mauchly, and John von Neumann, a consultant to the ENIAC project, began work on a newmachine before ENIAC was �nished. The main contribution of EDVAC, their new project,was the notion of a stored program. There is some controversy over who deserves the credit9
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for this idea, but none over how important the idea was to the future of general purposecomputers. ENIAC was controlled by a set of external switches and dials; to change the pro-gram required physically altering the settings on these controls. These controls also limitedthe speed of the internal electronic operations. Through the use of a memory that was largeenough to hold both instructions and data, and using the program stored in memory to con-trol the order of arithmetic operations, EDVAC was able to run orders of magnitude fasterthan ENIAC. By storing instructions in the same medium as data, designers could concen-trate on improving the internal structure of the machine without worrying about matchingit to the speed of an external control.Regardless of who deserves the credit for the stored program idea, the EDVAC project issigni�cant as an example of the power of interdisciplinary projects that characterize moderncomputational science. By recognizing that functions, in the form of a sequence of instruc-tions for a computer, can be encoded as numbers, the EDVAC group knew the instructionscould be stored in the computer's memory along with numerical data. The notion of us-ing numbers to represent functions was a key step used by Goedel in his incompletenesstheorem in 1937, work which von Neumann, as a logician, was quite familiar with. VonNeumann's background in logic, combined with Eckert and Mauchly's electrical engineeringskills, formed a very powerful interdisciplinary team.Software technology during this period was very primitive. The �rst programs werewritten out in machine code, i.e. programmers directly wrote down the numbers that cor-responded to the instructions they wanted to store in memory. By the 1950s programmerswere using a symbolic notation, known as assembly language, then hand{translating thesymbolic notation into machine code. Later programs known as assemblers performed thetranslation task.As primitive as they were, these �rst electronic machines were quite useful in appliedscience and engineering. Atanaso� estimated that it would take eight hours to solve a setof equations with eight unknowns using a Marchant calculator, and 381 hours to solve 29equations for 29 unknowns. The Atanaso�-Berry computer was able to complete the taskin under an hour. The �rst problem run on the ENIAC, a numerical simulation used inthe design of the hydrogen bomb, required 20 seconds, as opposed to forty hours usingmechanical calculators. Eckert and Mauchly later developed what was arguably the �rstcommercially successful computer, the UNIVAC; in 1952, 45 minutes after the polls closedand with 7% of the vote counted, UNIVAC predicted Eisenhower would defeat Stevensonwith 438 electoral votes (he ended up with 442).3.3 Second Generation (1954{1962)The second generation saw several important developments at all levels of computer systemdesign, from the technology used to build the basic circuits to the programming languagesused to write scienti�c applications.Electronic switches in this era were based on discrete diode and transistor technologywith a switching time of approximately 0.3 microseconds. The �rst machines to be built with10
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this technology include TRADIC at Bell Laboratories in 1954 and TX-0 at MIT's LincolnLaboratory. Memory technology was based on magnetic cores which could be accessed inrandom order, as opposed to mercury delay lines, in which data was stored as an acousticwave that passed sequentially through the medium and could be accessed only when thedata moved by the I/O interface.Important innovations in computer architecture3 included index registers for controllingloops and 
oating point units for calculations based on real numbers. Prior to this accessingsuccessive elements in an array was quite tedious and often involved writing self-modifyingcode (programs which modi�ed themselves as they ran; at the time viewed as a powerfulapplication of the principle that programs and data were fundamentally the same, thispractice is now frowned upon as extremely hard to debug and is impossible in most highlevel languages). Floating point operations were performed by libraries of software routinesin early computers, but were done in hardware in second generation machines.During this second generation many high level programming languages were introduced,including FORTRAN (1956), ALGOL (1958), and COBOL (1959). Important commercialmachines of this era include the IBM 704 and its successors, the 709 and 7094. The latterintroduced I/O processors for better throughput between I/O devices and main memory.The second generation also saw the �rst two supercomputers designed speci�cally fornumeric processing in scienti�c applications. The term \supercomputer" is generally reservedfor a machine that is an order of magnitude more powerful than other machines of its era.Two machines of the 1950s deserve this title. The Livermore Atomic Research Computer(LARC) and the IBM 7030 (aka Stretch) were early examples of machines that overlappedmemory operations with processor operations and had primitive forms of parallel processing.3.4 Third Generation (1963{1972)The third generation brought huge gains in computational power. Innovations in this erainclude the use of integrated circuits, or ICs (semiconductor devices with several transistorsbuilt into one physical component), semiconductor memories starting to be used instead ofmagnetic cores, microprogramming as a technique for e�ciently designing complex proces-sors, the coming of age of pipelining and other forms of parallel processing (described indetail in Chapter CA), and the introduction of operating systems and time-sharing.The �rst ICs were based on small-scale integration (SSI) circuits, which had around 10devices per circuit (or \chip"), and evolved to the use of medium-scale integrated (MSI)circuits, which had up to 100 devices per chip. Multilayered printed circuits were developedand core memory was replaced by faster, solid state memories. Computer designers began totake advantage of parallelism by using multiple functional units, overlapping CPU and I/Ooperations, and pipelining (internal parallelism) in both the instruction stream and the datastream. In 1964, Seymour Cray developed the CDC 6600, which was the �rst architectureto use functional parallelism. By using 10 separate functional units that could operate3The term \computer architecture" generally refers to aspects of a computer's internal organization thatare visible to programmers or compiler writers; see Chapter CA.11
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simultaneously and 32 independent memory banks, the CDC 6600 was able to attain acomputation rate of 1 million 
oating point operations per second (1 M
ops). Five years laterCDC released the 7600, also developed by Seymour Cray. The CDC 7600, with its pipelinedfunctional units, is considered to be the �rst vector processor and was capable of executingat 10 M
ops. The IBM 360/91, released during the same period, was roughly twice as fastas the CDC 660. It employed instruction look ahead, separate 
oating point and integerfunctional units and pipelined instruction stream. The IBM 360{195 was comparable to theCDC 7600, deriving much of its performance from a very fast cache memory. The SOLOMONcomputer, developed by Westinghouse Corporation, and the ILLIAC IV, jointly developedby Burroughs, the Department of Defense and the University of Illinois, were representativeof the �rst parallel computers. The Texas Instrument Advanced Scienti�c Computer (TI{ASC) and the STAR{100 of CDC were pipelined vector processors that demonstrated theviability of that design and set the standards for subsequent vector processors.Early in the this third generation Cambridge and the University of London cooperatedin the development of CPL (Combined Programming Language, 1963). CPL was, accordingto its authors, an attempt to capture only the important features of the complicated andsophisticated ALGOL. However, like ALGOL, CPL was large with many features that werehard to learn. In an attempt at further simpli�cation, Martin Richards of Cambridge de-veloped a subset of CPL called BCPL (Basic Computer Programming Language, 1967). In1970 Ken Thompson of Bell Labs developed yet another simpli�cation of CPL called simplyB, in connection with an early implementation of the UNIX operating system. comment):3.5 Fourth Generation (1972{1984)The next generation of computer systems saw the use of large scale integration (LSI { 1000devices per chip) and very large scale integration (VLSI { 100,000 devices per chip) in theconstruction of computing elements. At this scale entire processors will �t onto a single chip,and for simple systems the entire computer (processor, main memory, and I/O controllers)can �t on one chip. Gate delays dropped to about 1ns per gate.Semiconductor memories replaced core memories as the main memory in most systems;until this time the use of semiconductor memory in most systems was limited to registers andcache. During this period, high speed vector processors, such as the CRAY 1, CRAY X{MPand CYBER 205 dominated the high performance computing scene. Computers with largemain memory, such as the CRAY 2, began to emerge. A variety of parallel architecturesbegan to appear; however, during this period the parallel computing e�orts were of a mostlyexperimental nature and most computational science was carried out on vector processors.Microcomputers and workstations were introduced and saw wide use as alternatives to time{shared mainframe computers.Developments in software include very high level languages such as FP (functional pro-gramming) and Prolog (programming in logic). These languages tend to use a declarativeprogramming style as opposed to the imperative style of Pascal, C, FORTRAN, et al. In adeclarative style, a programmer gives a mathematical speci�cation of what should be com-12
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puted, leaving many details of how it should be computed to the compiler and/or runtimesystem. These languages are not yet in wide use, but are very promising as notations forprograms that will run on massively parallel computers (systems with over 1,000 processors).Compilers for established languages started to use sophisticated optimization techniques toimprove code, and compilers for vector processors were able to vectorize simple loops (turnloops into single instructions that would initiate an operation over an entire vector).Two important events marked the early part of the third generation: the developmentof the C programming language and the UNIX operating system, both at Bell Labs. In1972, Dennis Ritchie, seeking to meet the design goals of CPL and generalize Thompson'sB, developed the C language. Thompson and Ritchie then used C to write a version of UNIXfor the DEC PDP{11. This C{based UNIX was soon ported to many di�erent computers,relieving users from having to learn a new operating system each time they change computerhardware. UNIX or a derivative of UNIX is now a de facto standard on virtually everycomputer system.An important event in the development of computational science was the publicationof the Lax report. In 1982, the US Department of Defense (DOD) and National ScienceFoundation (NSF) sponsored a panel on Large Scale Computing in Science and Engineer-ing, chaired by Peter D. Lax. The Lax Report stated that aggressive and focused foreigninitiatives in high performance computing, especially in Japan, were in sharp contrast tothe absence of coordinated national attention in the United States. The report noted thatuniversity researchers had inadequate access to high performance computers. One of the�rst and most visible of the responses to the Lax report was the establishment of the NSFsupercomputing centers. Phase I on this NSF program was designed to encourage the use ofhigh performance computing at American universities by making cycles and training on three(and later six) existing supercomputers immediately available. Following this Phase I stage,in 1984{1985 NSF provided funding for the establishment of �ve Phase II supercomputingcenters.The Phase II centers, located in San Diego (San Diego Supercomputing Center); Illinois(National Center for Supercomputing Applications); Pittsburgh (Pittsburgh Supercomput-ing Center); Cornell (Cornell Theory Center); and Princeton (John von Neumann Center),have been extremely successful at providing computing time on supercomputers to the aca-demic community. In addition they have provided many valuable training programs andhave developed several software packages that are available free of charge. These PhaseII centers continue to augment the substantial high performance computing e�orts at theNational Laboratories, especially the Department of Energy (DOE) and NASA sites.3.6 Fifth Generation (1984{1990)The development of the next generation of computer systems is characterized mainly bythe acceptance of parallel processing. Until this time parallelism was limited to pipeliningand vector processing, or at most to a few processors sharing jobs. The �fth generationsaw the introduction of machines with hundreds of processors that could all be working on13
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di�erent parts of a single program. The scale of integration in semiconductors continued atan incredible pace | by 1990 it was possible to build chips with a million components |and semiconductor memories became standard on all computers.Other new developments were the widespread use of computer networks and the increas-ing use of single-user workstations. Prior to 1985 large scale parallel processing was viewedas a research goal, but two systems introduced around this time are typical of the �rst com-mercial products to be based on parallel processing. The Sequent Balance 8000 connectedup to 20 processors to a single shared memory module (but each processor had its own localcache). The machine was designed to compete with the DEC VAX{780 as a general purposeUnix system, with each processor working on a di�erent user's job. However Sequent pro-vided a library of subroutines that would allow programmers to write programs that woulduse more than one processor, and the machine was widely used to explore parallel algorithmsand programming techniques.The Intel iPSC{1, nicknamed \the hypercube", took a di�erent approach. Instead ofusing one memory module, Intel connected each processor to its own memory and useda network interface to connect processors. This distributed memory architecture meantmemory was no longer a bottleneck and large systems (using more processors) could bebuilt. The largest iPSC{1 had 128 processors. Toward the end of this period a third typeof parallel processor was introduced to the market. In this style of machine, known as adata-parallel or SIMD, there are several thousand very simple processors. All processorswork under the direction of a single control unit; i.e. if the control unit says \add a to b"then all processors �nd their local copy of a and add it to their local copy of b. Machinesin this class include the Connection Machine from Thinking Machines, Inc., and the MP{1from MasPar, Inc.Scienti�c computing in this period was still dominated by vector processing. Most man-ufacturers of vector processors introduced parallel models, but there were very few (twoto eight) processors in this parallel machines. In the area of computer networking, bothwide area network (WAN) and local area network (LAN) technology developed at a rapidpace, stimulating a transition from the traditional mainframe computing environment to-ward a distributed computing environment in which each user has their own workstationfor relatively simple tasks (editing and compiling programs, reading mail) but sharing large,expensive resources such as �le servers and supercomputers. RISC technology (a style of in-ternal organization of the CPU) and plummeting costs for RAM brought tremendous gainsin computational power of relatively low cost workstations and servers. This period also sawa marked increase in both the quality and quantity of scienti�c visualization.3.7 Sixth Generation (1990 { )Transitions between generations in computer technology are hard to de�ne, especially asthey are taking place. Some changes, such as the switch from vacuum tubes to transistors,are immediately apparent as fundamental changes, but others are clear only in retrospect.Many of the developments in computer systems since 1990 re
ect gradual improvements14
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Table 2: Network SpeedsTransmission TimeName Speed 24-bit Color Bible Encyclopedia(bits/sec) Screen BritannicaT3 45,000,000 0.5 sec 1.2 sec 60 secT1 1,544,000 15 sec 36 sec 30 min56 kbps 56,000 7 min 16 min 13 hrs14.4 kbaud 14,400 0.5 hr 1 hr 2 daysover established systems, and thus it is hard to claim they represent a transition to a new\generation", but other developments will prove to be signi�cant changes.In this section we o�er some assessments about recent developments and current trendsthat we think will have a signi�cant impact on computational science. This gener-ation is beginning with many gains in parallel computing, both in the hardware area andin improved understanding of how to develop algorithms to exploit diverse, massively par-allel architectures. Parallel systems now compete with vector processors in terms of totalcomputing power and most expect parallel systems to dominate the future.Combinations of parallel/vector architectures are well established, and one corporation(Fujitsu) has announced plans to build a system with over 200 of its high end vector pro-cessors. Manufacturers have set themselves the goal of achieving tera
ops ( 1012 arithmeticoperations per second) performance by the middle of the decade, and it is clear this willbe obtained only by a system with a thousand processors or more. Workstation technol-ogy has continued to improve, with processor designs now using a combination of RISC,pipelining, and parallel processing. As a result it is now possible to purchase a desktopworkstation for about $30,000 that has the same overall computing power (100 mega
ops)as fourth generation supercomputers. This development has sparked an interest in heteroge-neous computing: a program started on one workstation can �nd idle workstations elsewherein the local network to run parallel subtasks.One of the most dramatic changes in the sixth generation will be the explosive growthof wide area networking. Network bandwidth has expanded tremendously in the last fewyears and will continue to improve for the next several years. T1 transmission rates are nowstandard for regional networks, and the national \backbone" that interconnects regionalnetworks uses T3. Networking technology is becoming more widespread than its originalstrong base in universities and government laboratories as it is rapidly �nding application inK{12 education, community networks and private industry. A little over a decade after thewarning voiced in the Lax report, the future of a strong computational science infrastruc-15
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ture is bright. The federal commitment to high performance computing has been furtherstrengthened with the passage of two particularly signi�cant pieces of legislation: the HighPerformance Computing Act of 1991, which established the High Performance Computingand Communication Program (HPCCP) and Sen. Gore's Information Infrastructure andTechnology Act of 1992, which addresses a broad spectrum of issues ranging from high per-formance computing to expanded network access and the necessity to make leading edgetechnologies available to educators from kindergarten through graduate school.In bringing this encapsulated survey of the development of a computational science infras-tructure up to date, we observe that the President's FY 1993 budget contains $2.1 billion formathematics, science, technology and science literacy educational programs, a 43% increaseover FY 90 �gures.4 The Modern High Performance ComputingEnvironmentThe �rst computer to be termed a \supercomputer" was the CDC 6600, introduced in1966. Later model CDC 6600s had a peak performance rate of 3 million 
oating pointoperations per second, or 3 Mega
ops (M
ops). Computers of the 1990s are capable ofpeak performance rates of one Giga
op (one thousand Mega
ops). Tera
op (one millionMega
ops) performance rates are predicted by the turn of the century. Table 3 showsthe peak performance rate for some representative machines. With this rapid increase inperformance, it has long been recognized that the de�nition of the term supercomputer mustbe dynamic. More than just peak performance rates must be considered when designating acomputer as a super computer. Other factors that must be considered include memory sizeand memory bandwidth.Recently the term \supercomputer" has been displaced by the term \high performancecomputer" or \high performance computing environment". This shift in terminology hasresulted from the recognition that, in a computational science setting, when real problemsare being tackled (rather than just CPU benchmarks) it is the entire computing environ-ment that must o�er high performance, not just the CPU. In addition to a computer with ahigh computational rate and a large, fast memory, a high performance computing environ-ment must include high speed network access, reliable and robust software and compilers,documentation and training and scienti�c visualization support.In today's high performance computing environment, a computational scientist's routineactivities rely heavily on the Internet. Activities include exchange of e-mail and interactivetalk or chat sessions with colleagues. Heavy use is made of the ability to transfer documentssuch as proposals, technical papers, data sets, computer programs and images. A networkedhigh performance computing environment provides the computational scientist access to awide array of computer architectures and applications. Using telnet to connect to a remotecomputer (on which one has an account) on the Internet enables the computational scientist16
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Table 3: Peak Performance Rates of Selected ComputersMachine Number of Processors Peak Performance (M
ops)CDC 6600 1 3CDC 7600 1 10CRAY 1 1 160CYBER 205 1 400nCUBE/10 1024 500IBM 3090/VF 6 686CRAY X-MP 4 940CRAY Y-MP 8 2664CM-2 65536 20000CM-5to use all of the computational power and software applications of that remote machine.digits

17
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